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ABSTRACT
During the COVID-19 pandemic, online classes became the only option for many students. The
main challenge for these classes was conducting risky and complex chemical or biological experi-
ments in a domestic environment. To address this challenge, a smart experiment system called
MRLab was developed. MRLab used wearables such as a smart glove and head-mounted device
to record sensory data and a multimodal hybrid fusion model GVVS to interpret the user’s experi-
mental intent, which essentially transforms the user’s abstract behavioral actions into a probabilis-
tic set of experimental intent that can be computed. Different experiments in MRLab used
different libraries of experimental intents. The SrNet model in GVVS was used to estimate the
probability of the user’s gesture behavior generated from the smart glove, while the SIPA algo-
rithm compared speech information entered during the experiment with the experimental intent
library to estimate the probability of the user’s intent. At the same time, the scene visual channel
monitored the information about the object the user intended to operate, with the SVF algorithm
computing the probability of the intended object in real-time. The results from ANOVA and post-
hoc comparative testing conducted on 21 volunteers revealed that MRLab outperformed other
experiment modes, including WEB, AR, and VR, with a higher intention understanding rate, effi-
ciency, and user satisfaction. Therefore, MRLab proved to be a useful alternative to traditional
physics laboratory experiments during the pandemic, along with being an additional teaching tool
for remote learning purposes.

KEYWORDS
Smart glove; mixed reality;
virtual-reality fusion
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fusion; intent understanding

1. Introduction

Many secondary school experiments have issues such as
reagent contamination, hazardous operations, and high raw
material consumption. Additionally, students in education-
ally underdeveloped areas often lack the resources and time
for experimental education. During epidemics, experimental
teaching becomes even more challenging to conduct online.
Therefore, to support the growth of intelligent education,
extended reality (XR) technology has become increasingly
popular in recent years (Papakostas et al., 2023).

Secondary school students often use extended reality
(XR) technology to complete virtual experiments. Three XR
technologies are commonly used: augmented reality (AR),
virtual reality (VR), and mixed reality (MR). Firstly, AR
allows students to interact with 3D models, improving their
understanding of concepts through 3D visualization and
eliminating their cognitive gaps between the actual world
and data spaces (Chen & Liu, 2020). However, AR’s experi-
mental environment depends on recognition cards, causing
interaction and recognition problems. Secondly, VR provides
an immersive and interactive learning experience (Ozdemir
& Ozturk, 2022), but manipulable objects in VR experiments
are virtual, lessening the perception of actual operation.
Meanwhile, MR provides a brand-new visual environment
where real and virtual objects can interact in the same space,

pushing development and generating new ideas in various
fields, including education (Luo et al., 2020), medicine (Silva
Jennifer et al., 2018), and entertainment (Hammady et al.,
2020). Therefore, MRLab, a new interactive environment
that uses MR technology, satisfies the demands of immer-
sive, real-world experience and natural interaction for
experimental instruction.

In virtual and reality fusion experiments, gesture behavior
is a crucial component in determining user intention.
However, traditional vision-based gesture recognition is
often impacted by complicated and obstructed environ-
ments, making it difficult to meet experimental require-
ments. To overcome this challenge, this study firstly created
a multi-sensor fusion smart glove (Figure 1) inspired by the
TAGLOVE (Cai et al., 2020), this is the hardware basis for
assessing and determining the user’s experimental operations
intention in MRLab.

The main objective of this study is to assist students in
completing virtual-reality fusion experiments using wear-
ables in an MR environment. However, the sensor, speech,
and scene visual data generated by the students during the
experiment are dispersed in time and isolated in space, mak-
ing it challenging to translate this abstract data into the
experimental intention that MRLab can understand.
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Consequently, the following novel contributions were pro-
posed by this paper:

1. A smart glove prototype was developed to collect the
user’s gestural motion signals and scene visual data in
an MR environment. This smart glove (available at
approximately $100) contains a cheap commercial sen-
sor and a binocular camera, which allows for precise
motion and visual detection.

2. A multimodal hybrid fusion model GVVS, incorporat-
ing a sensor channel, speech channel, and scene visual
channel, is established to quickly and accurately cat-
egorize user intentions during user experimental opera-
tions. This model enables the collection and processing
of continuous or discrete data information produced
during the experiments and simultaneously processes
data from multiple sources using feature layer fusion
and decision layer fusion, make it simpler to improve
the accuracy and speed of categorizing user intentions
in MRLab.

3. A head-mounted device is used to establish a virtual-
reality interaction channel and capture the user’s head
posture. Meanwhile, a display shows the smart experi-
mental scene in MR environments, allowing users to
operate experimental instruments and chemicals in the
real world while observing corresponding experimental
phenomena in the virtual world. This feature satisfies
users’ desire for immersion and real-world operation.

The paper is structured as follows: Chapter 2 provides an
extensive explanation of related work. In Chapter 3, the
multimodal fusion model and smart glove prototype design
are described. Chapter 4 focuses on analyzing and discussing
system data and experimental findings. The discussion,
future work, and conclusions are presented in Chapters 5
and 6.

2. Related work

2.1. Experimental teaching of virtual simulation

Virtual simulation technology was gradually integrated into
experimental education processes toward the end of the 20th
century. This technology offers the advantage of recreating

real-world objects and replicating difficult-to-observe events
when compared to traditional hands-on experimental teach-
ing (De Jong & Van Joolingen, 1998). However, during the
early days of integrating virtual simulation technology in
education, several challenges regarding expensive and mas-
sive equipment, as well as a high demand for professional
and technical employees, coupled with insufficient attention
given to the innovation of experimental content were
encountered. Recently, there have been significant advances
in computer graphics and hardware, and as a result, the
focus of research has shifted from obtaining superior digital
equipment to the production of experimental content
employing advanced technology.

The web-based virtual experiment platform has signifi-
cantly reduced the cost of virtual simulation experiments,
allowing students to conduct frequency modulation experi-
ments regarding communication principles through a web
browser (Chi Chung et al., 2001). However, using the con-
ventional Windows, Icons, Menus, and Pointers (WIMP)
interface for computer interaction in experimental education
may lead students to lose sight of real-world operation
experience (Beaudouin-Lafon, 2000; Jacob et al., 2008).
Fortunately, the advent of the internet and the proliferation
of mobile devices offer effective solutions to these issues.
Virtual modeling can be accomplished, and interactive appli-
cations of actual physical objects can be developed using
smartphones and Augmented Reality (AR) technology
(Heun et al., 2013). This approach offers the advantage of
using mobile devices to enhance students’ interaction experi-
ence with the physical world, improve their learning effi-
ciency, and leverage their familiarity with the way media
devices are used for interaction (Han et al., 2019). However,
this method has limited tactile feedback, does not effectively
handle the relationship between real-world and virtual object
occlusion, and may make the interaction process unnatural
since users have to rely on mobile devices frequently during
operation.

With the development of virtual simulation technology,
“real-virtual continuum” was introduced as a concept that
emphasized MR’s focus on the interaction and integration
of the virtual and real worlds, while AR augments the
real world, and VR enhances the virtual world (Wang et al.,
2020). On the basis of MR technology, the application
of tangible user interface (TUI) is gradually developing

Figure 1. (Left) An image showing a user operating chemical experiments using a smart glove and head-mounted device; (Middle) A close-up of the front and
back of the smart glove; (Right) A schematic showing the types and locations of sensors incorporated in the smart glove.
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(Ishii & Ullmer, 1997). In the TUI environment, physical
objects can be fully matched with virtual superimposed
information, satisfying natural user interaction (Azmandian
et al., 2016). However, TUI’s interaction technology is prone
to registration tracking errors and significant interaction
delays, casting doubt on its reliability. Currently, the 3D
interactive system created with the Kinect device addresses
these issues and allows direct interaction with virtual objects
in the 3D user interface (Hilliges et al., 2012). This inter-
active method lets users interact with computers in both
physical and virtual 3D spaces, integrating virtual and actual
teaching environments (Lee et al., 2013).

Virtual simulation experiments can help users compre-
hend complex information and increase their interest in
learning while minimizing risks. Comparatively, MRLab
focuses on MR technology and 3D user interface (3DUI)
interactive methods, utilizing a head-mounted device to cre-
ate an interface among the virtual world, the real-world, and
users. This device also enhances the sense of realism in the
user experience by creating an interactive feedback path
between the user, the real-world, and the virtual world.

2.2. Multimodal fusion

The majority of the experimental environments previously
discussed are built around single-channel interaction, which
is unsuitable for experimental instruction that involves a lot
of hands-on work. As a consequence, in MR environments,
multi-channel interaction has been developed to support
users in interacting with computers through various chan-
nels, such as voice, gestures, visuals, sounds, and smells
(Mistry et al., 2009). This approach achieves the addition
and complementation of interaction information between
different channels, aiding learners in obtaining a natural 3D
interaction experience during experiments (Wanick et al.,
2018; Wei et al., 2011). The challenge for this research
approach is to address the efficiency, accuracy of user’s
intentions, and naturalness of the interaction, and process-
ing user input data. Various studies have shown that when
compared to relying on single modes of information, fusing
multi-channel information can efficiently and reliably extract
the intention behind user operations, increase the natural-
ness and efficiency of the interaction (Alzubi et al., 2023;
Sun et al., 2021).

There are four main multimodal fusion techniques: data
layer fusion, feature layer fusion, decision layer fusion, and
hybrid fusion. Data layer fusion, which is the lowest-level
fusion method, involves processing and filtering raw data to
facilitate handling, storage, and transmission. Techniques
like data noise reduction and data compression are used to
optimize the data. SVM models (Zhao et al., 2007) and deep
learning methods (Zhang et al., 2018) can be used for the
fusion of multi-source heterogeneous data to improve data
accuracy. Nonetheless, only using data layer fusion chal-
lenges the determination of feature correlations across
incoming input, thereby making it difficult to determine the
purpose of user actions. With the advancement of deep
learning, feature layer fusion has significantly increased the

recognition rate in fields like target detection (Bai et al.,
2022) and picture recognition (Sun et al., 2005). Feature
layer fusion extracts specific features from various modalities
and transfers them using a transformation to a high-
dimensional feature vector, enabling the training model to
classify the user’s intended behavior. The main benefit of
this method is increased accuracy in identifying intent by
analyzing relevant features of various model information,
but identifying the most significant features takes time.
Decision layer fusion fuses the outcomes of several modal-
ities to increase decision accuracy by utilizing different
learning algorithms for each model information (Chen et al.,
2004). However, it cannot effectively learn the impact of fea-
ture relationships between modalities on intent recognition.
Hybrid fusion uses both feature and decision-level fusion
methods to obtain the user’s intention (Zhou et al., 2020).

Considering that the sensor, voice, and visual information
in MRLab are spatiotemporally isolated, this study proposes
the GVVS hybrid fusion model for multimodal information.
The model includes (1) SrNet feature fusion model for the
sensor channel, which produces the hand behavior probabil-
ity used for user experimental operation, (2) SVF algorithm
for scene vision channel, which uses a head-mounted device
and a glove’s wrist camera to track the probability data of
the experimental object that the user wants to acquire in
real-time, and (3) SIPA algorithm of the speech channel,
which uses the text similarity matching approach to deter-
mine the probability of the user’s intention. Finally, at the
decision-making level, the improved information volume
weighting method is utilized to fuse the three-channel prob-
ability information to generate the user’s operation intention
in Mixed Reality Lab.

2.3. Smart wearables

The technology of smart wearables combines sensing, data
processing, communication, and interaction (Mann, 1998).
It gathers data through user-device interaction and store or
transmit it in real-time. Due to its miniaturization, light
weight, and wearability features, it is easy for users to use
and transport. Smart wearables are typically separated into
head-mounted, body-dressed, hand-worn, and foot-worn
categories based on the physical characteristics of the human
body structure. In the XR environment, various wearable
devices are employed depending on the specific application.

Head-mounted wearables, such as glasses and helmets,
can be used to assist visually impaired individuals in per-
forming orientation and movement training in virtual reality
(VR) environment with the use of smart glasses (Thevin
et al., 2020). Additionally, researchers have demonstrated
that a virtual character modeling system can replicate the
handcrafting process from the physical world in a VR envir-
onment using a head-mounted display (HMD) and Leap
Motion (Park et al., 2017); Wearables such as coats, under-
wear, and trousers are embedded with sensors made of con-
ductive fibers and nanomaterials. Researchers have
developed a digital clothing prototype, utilizing Sparse Soft
Sensors, which can facilitate 3D human body reconstruction
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(Chen et al., 2021); In order to enable distant communica-
tion between sign and non-sign language users, an AI-based
sign language translation glove was proposed to project the
results of sign language recognition into the VR environ-
ment (Wen et al., 2021); Wearable devices can also be
attached to the feet, such as socks and shoes. A smart sock
utilizes four soft stretchable sensors based on silk fibroin
yarn to perform real-time 3D reconstruction of the foot
(Zhang et al., 2020). Compared to traditional devices like
computers and mobile devices, wearable technology offers a
greater range of human-computer interaction methods,
which enhances the user experience and improves the
quality of life.

Smart gloves equipped with multiple sensors have shown
potential in various applications, such as gesture capture,
robot manipulation (Roy et al., 2015), rehabilitation training
(Ma et al., 2016), and sign language recognition (Luzhnica
et al., 2016). Hand movements also play a critical role in
operating the experiment. On the basis of our earlier research
(Wang et al., 2022), this study utilizes wearable technologies,
such as smart gloves and head-mounted devices, to capture
the user’s experimental intentions with a high degree of oper-
ational freedom in the MRLab. Meanwhile, collaborative
processing of data from multiple channels can aid in carrying
out virtual and real fusion experimental exercises in second-
ary school, supported by interactive modes such as sensing,
speech, and visual information.

3. Overview of MRLab

This paper presents the development of MRLab, which
assists secondary school students in conducting experiments
using a smart glove and a head-mounted device. The ability
to understand the student’s experimental intentions is

crucial to the success of MRLab, as it allows for accurate
and efficient support for virtual-reality fusion experiments.
The experimental intention in this study refers to the user’s
operational steps during the experiment, which MRLab
identifies using the GVVS model in Section 6, and provide
appropriate feedback or correction according to the multi-
modal output module in Section 7.

Multimodal intent identification involves three stages:
information gathering, intent analysis, and intent fusion and
extraction. Section 2 discusses information gathering, while
Sections 3–5 provide a detailed explanation of intent analysis.
Section 6 covers the process of intent fusion and extraction.

3.1. GVVS: multimodal hybrid fusion model

The sensor, voice, and scene visual information produced by
users during smart experiments in MRLab are often isolated
in space and dispersed in time. To address this issue, this
study proposes the GVVS hybrid fusion model for multi-
modal information. The paper discusses a multi-sensor fea-
ture fusion model based on SrNet for obtaining user hand
action probabilities and an SVF algorithm using the
improved YOLOv5 technique to derive the probabilities of
objects that the user intends to operate from continuous
information channel I cs, including sensor and scene visual
information. Discrete speech information is processed using
the SIPA algorithm to derive the set of intention probabil-
ities I vc under the speech channel (discrete information
channel) with Baidu speech recognition technology and
Chinese lexical analysis technology. These two sets of proba-
bilities are fused at the decision layer in GVVS to generate
the final experimental intention. Figure 2 displays the
general structure of the GVVS model.

Figure 2. GVVS overall framework diagram.
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3.2. Hardware and software implementation

This study aims to design a smart glove with multi-sensor
fusion specifically for use in secondary school experiments.
The glove is equipped with a microcontroller, sensor set,
and binocular camera to capture multi-sensor signals and
scene information from the user. The collected data is then
used to analyze the user’s gesture movements and determine
the experimental objects they want to operate.

1. The microcontroller is the central control module used
for handling the sensor signals.

2. The sensor set comprises of a vibration sensor, flex sen-
sor, pressure sensor, and posture sensor (MPU 6050).

� Flex sensor located in the finger section measures the
degree of finger bending and maps the changes to the
virtual hand in the Unity scene.

� The MPU 6050, situated on the back of the hand,
measures the hand’s three-axis angle, angular velocity,
and acceleration.

� A pressure sensor in the finger belly measures the
condition of the finger while operating an experiment.

� A vibration sensor located in the back of the hand
provides vibration feedback during the contact pro-
cess, thereby creating a more genuine user experience.

3. The smart glove has a binocular camera fixed in its
wrist portion. This feature allows for real-time informa-
tion gathering about the experimental scene, addressing
the issues commonly found in traditional virtual experi-
ment practices that involve cameras and Kinect devices
resulting in obscuration and poor long-distance object
recognition accuracy. The smart glove’s sensor group

and binocular camera transfer sensing and visual data,
respectively, to the computer via Bluetooth and USB.
Figure 3 illustrates the hardware structure of this
system.

MRLab, in contrast to other VR devices such as VR
glasses, can achieve 3D registration of digital objects with
physical spatial locations using a simple head-mounted
device. It enables the interaction of real experimental instru-
ments with virtual objects, allowing users to perform a var-
iety of experiments in smart labs while utilizing technologies
like virtual-reality overlay and human-computer interaction.
The FPS of MRLab remains stable at 23 frames per second,
and it is primarily developed using the Unity engine and
C# language.

3.3. SrNet: a multi-sensor feature fusion model based
on smart glove

While user behavior recognition employing multiple hetero-
geneous sensors is widely used in various fields, identifying
complex human activities remains a challenge. Human activ-
ities typically occur in complex environments where mul-
tiple behaviors are carried out simultaneously. Multiple
heterogeneous sensors fused for data fusion can also lead to
compatibility problems, resulting in low recognition accur-
acy for concurrent complex activities. This study is limited
to the application of user behavior in smart labs, where sen-
sors are used to detect users’ experimental actions.
Additionally, this paper proposes a feature fusion-based
multi-sensor model called SrNet, which uses convolutional
neural networks to automatically extract features from each
sensor’s raw data to improve the generalization and robust-
ness of detecting users’ experimental operating behaviors.

Figure 3. System hardware composition structure diagram.
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This model is split into two main sections and employs
the thinking of feature layer fusion:

(1) Each of the three sensors (Sið0 < i < 3Þ) has a cor-
responding 2-layer convolutional subnetwork. The convo-
lutional subnetwork takes a segment of the sensor time
series matrix V Sið Þ, obtained from a sliding window of t
seconds, as an input. Each layer of the convolutional sub-
network undergoes a 2D convolutional kernel with a size
of (1,3) to learn the data features. The feature maps
convi1, convi2 are then obtained sequentially using
Equation (1).

convij ¼ aij�1Wij þ bij (1)

where aij�1 denotes the output value of the i-th sensor at
layer j� 1, the convolution kernel weight is W, and the
bias is b: And then, the convi2 of the depth feature maps of
these three sensors are merged to obtain a large depth fea-
ture map.

X0 ¼ concatðconv02, conv12, conv22Þ (2)

(2) Next, the large feature map passes through two con-
volutional network layers to determine correlations between
multiple sensor features and obtain F conv1 and F conv2 in
turn. Finally, a Softmax classifier is employed in the fully
connected layer to classify user actions and output probabil-
ities as indicated in Equation (3).

PðactioniÞ ¼ softmaxðF conv2Þ (3)

In this case, this model uses the labels from the
actual classification to optimize parameters using a back-
propagation algorithm. Additionally, each convolution layer
performs batch normalization to avoid vanishing gradients
and is accompanied by a non-linear RELU activation
function.

3.4. SVF algorithm: decision level fusion algorithm of
scene vision channel

Under the scene visual channel, the binocular camera on the
smart glove perceives the entire experimental scene. This
paper incorporates the SENet attention mechanism to
improve perception accuracy and the stereo-matching algo-
rithm SGBM to extract depth information, and finally gener-
ates the probability set G of experimental instruments that
the user wants to operate by identifying the depth informa-
tion and category probability of the object Bounding Box, as
shown in Figure 4.

Furthermore, the head-mounted device can record both
the data related to the user’s head posture and serve as a
channel for virtual-real-world interaction. Consequently, uti-
lizing the spatial location of the head-mounted device as the
coordinate origin, this study proposes a head ray R based on
the head-mounted device and YOLOv5 technology to
dynamically generate the probability set H of experimental
things that the user desires to operate.

The decision-level fusion process in this academic paper
utilizes the Bagging concept of integrated learning. Its
objective is to fuse two probability sets and output the

probability information of the object that the user intends to
manipulate through the visual scene channel. The specific
algorithm steps are as follows.

Algorithm 1: Scene visual fusion algorithm (referred to
as SVF)

Input: head ray R, set of experimental objects OBJ;
Output: set of experimental objects probability under scene
visual channel;
1. While OBJ! ¼ Empty do
2. The improved YOLOv5 model is used to obtain the depth
information depi and the category probability PðobjiÞ of
object obji in the object set OBJ,

depi, PðobjiÞ
� � ¼ getðobjiÞ

3. Calculate the weights corresponding to obji under the vis-
ual channel according to the incremental change of the
object’s depth,

W ið Þ ¼ DdepiPn
m¼0Ddepm

4. Calculate the probability of the object obji in the set of
experimental objects OBJ under the scene vision channel of
the smart glove,

PG obji
� � ¼ W ið ÞP obji

� �

5. While R! ¼ Empty do

6. The intersection point ðX,YÞ is formed between the ray R
and the plane where the experimental object is located, and
the distance between the Bounding Box coordinate points
ðxi, yiÞ of all experimental objects and the intersection point
is calculated,

distancei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � Xð Þ2 þ yi � Yð Þ2

q

7. Calculate the probability of the object obji in the set of
experimental objects OBJ under the scene vision channel of
the head-mounted device,

PH obji
� � ¼ 1� distanceiPn

m¼0distancem

8. Probabilistic fusion of two experimental object probability
sets,

P obji
� � ¼ ðPG obji

� �þ PHðobjiÞÞ
2

9. End

3.5. SIPA algorithm: Speech channel intention
probability acquisition algorithm

The users can input speech data to the speech channel any
time in the MRLab. However, current research requires
users to fix the speech data, such as voiceprint
(Nidhyananthan, 2018) or keyword recognition, which can
increase the user’s psychological burden and conflict with
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human-computer interaction principles (Kaptelinin, 1996).
Therefore, this paper proposes a probabilistic algorithm to
acquire the user’s speech intention based on text similarity
matching, which allows users to input arbitrary information
in a more relaxed manner and enables the system to under-
stand the user’s speech intention accurately through prob-
abilistic calculations.

This algorithm builds upon the Baidu Speech Recognition
API and Chinese lexical analysis technology. Meanwhile, the
user’s voice is continuously monitored by MRLab and sepa-
rated into a set of verbs sv and a set of nouns sn:
Furthermore, the set of temporary intention V is obtained
through the Cartesian product between sv and sn: Then, the
user’s experimental intention probability set in the speech
channel is determined by matching the text similarity with
the experimental intention database ES, and the specific
algorithm steps are as follows.

Algorithm 2: Speech channel intent probability acquisition
algorithm based on text similarity matching (referred to as
SIPA)

Input: user input speech s, experimental intent library ES;
Output: the set of experimental intention probabilities I vc
under the speech channel;
1. While s! ¼ Empty do
2. Divide the user input speech message s into verb set sv
and noun set sn,

sn, sv ¼ ParticipleðspeechÞ
3. perform a Cartesian product operation on sn and sv, and
generate a temporary set of intentions V,

V ¼ Dikaerðsn, svÞ
4. Matching the instructions V with the experimental library
ES for text similarity and updating the set of intention prob-
abilities under the speech channel,

I vc ¼ PðMatching V, ESð ÞÞ
5. End

3.6. Multimodal fusion

Multimodal intent fusion and extraction is necessary for
human-computer collaboration and interaction in MR smart

experiments. The entire input information from all channels
must be integrated by multimodal fusion before the system
can authenticate users’ intent completely. Therefore, the
probability sets of intentions from all three channels are
combined at the decision level using the information quan-
tity weights in this research.

Suppose the user is performing in experiments, and the
experimental intent library ES has R experimental intentions,
indicated as I1:::R ¼ fI1, :::, IRg: The system analyses the sen-
sor channel data from the SrNet model to determine the
likelihood of user action, which is indicated as:

P actionð Þ ¼ fP Graspð Þ, P Releaseð Þ, P Pourð Þ, PðPinchÞg
The SVF algorithm analyses the information from the scene

visual channel to determine the probability of the experimental
objects the user intends to manipulate. Suppose there are S
experimental objects, the probability is represented as:

P objectð Þ ¼ fP object1
� �

,P object2
� �

, :::, PðobjectSÞg
In order to obtain the set of intention probabilities

I cs1:::R ¼ fIcs1, :::, I csRg under the continuous information
channel, this paper operates P actionð Þ and P objectð Þ as fol-
lows:

I cs ¼ fP actionð Þ � P objectð Þjðactionþ objectÞ 2 ESg
where ðactionþ objectÞ 2 ES indicates that the intent result-
ing from splicing the action and object should be in the
experimental intent library of the current experiment. And
if this condition is satisfied, the Cartesian product operation
can be performed on P actionð Þ and P objectð Þ, and finally,
the set of experimental intent probabilities I cs under the
continuous information channel is obtained.

If the user does not input any speech information during
the experiment, a speech (discrete information) channel
intention probability set I vc is not generated, denoted as
I vc1:::R ¼ fI vc1:::I vcRg: In this case, we consider the final
user intention as:

I ¼ maxðI csÞ (4)

If voice information is input, the system requires intent
fusion of I cs and I vc, which is given by:

I ¼ maxðxI csI csþ xI vcI vcÞ (5)

Each channel varies in importance among them, therefore
in this research, we introduce the parameter x and use the

Figure 4. Scene visual channel.
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information quantity weight method to dynamically calcu-
late the weight of each channel’s intention probability set.
However, before calculating the weights, we must determine
the coefficient of variation D of these two channels. In con-
ventional practice, calculating the coefficient of variation is
achieved by finding the variance and mean of probability
sets with R experimental intentions (Bedeian & Mossholder,
2000). The larger the difference between the probabilities in
the intention probability set, the higher the accuracy of the
channel’s intention recognition is demonstrated to be. As a
result, it requires a higher weighting. This research improve
the classic coefficient of variation solution as follows in
order to make the coefficient more compatible with the
technique of calculating the experimental intent and to pre-
vent the set’s intent probabilities from being too high or too
low to produce unrealistic values.

DI cs ¼ MeanðgðI csÞ,RÞ
VarianceðI cs,RÞ

DI vc ¼ MeanðgðI vcÞ,RÞ
VarianceðI vc,RÞ

8>>>><
>>>>:

(6)

where gð�Þ represents the Gaussian distribution of the dis-
tance between intention probabilities, as shown in the equa-
tion.

g I csð Þ ¼ e�
ðI csi�ImaxÞ2

2r2

g I vcð Þ ¼ e�
ðI vci�ImaxÞ2

2r2

8<
: (7)

where, while Imax is the maximum reliable probability
threshold we define, r2 is a constant that limits the range of
values. In this paper, the normalization operation is per-
formed on the coefficients of variation to obtain the
dynamic weight information under continuous and discrete
information channels, as shown in the equation.

xVT ,xVC ¼ NormalizationðDVT ,DVCÞ (8)

where xI cs and xI vc both belong to ð0, 1Þ,
and xI cs þ xI vc ¼ 1:

3.7. Multimodal output

To provide users with a positive experimental experience
and advantageous learning outcomes, this paper uses
Maslow’s needs theory to direct and correct users’ experi-
mental behavior (McLeod, 2007). According to this psycho-
logical theory, physiological needs, security needs,
belongingness needs, esteem needs, and self-actualization
needs describe the range of human needs. To better align
with the demands of virtual experiments, an MVE model
that builds upon Maslow’s needs theory was presented in
the context of smart experiments (Pan et al., 2022). They
contend that traditional Maslow’s Needs Hierarchy theory
(MNH) no longer satisfies the practical conditions of smart
experimentation. Thus, they expand the scope of physio-
logical needs to involve basic needs (such as sensory and
system needs) and security needs to encompass both safety
and comfort needs. This paper introduces a Multi-Modal
Output Module that motivates learning by creating a com-
fortable, safe and realistic virtual environment for students
to conduct experiments. A framework of the module is
shown in Table 1.

The smart glove-based MRLab simulates multi-sensory
experiences such as visual, auditory, tactile and vibration
sensations that enable efficient knowledge mastery for stu-
dents’ fundamental sensory needs. The system hardware
needs utilize a smart glove and a head-mounted device to
fully immerse users in the system. Additionally, on the soft-
ware side, experiments are created in accordance with estab-
lished experimental laws, and information augmentation
techniques simulate the corresponding experimental
phenomena.

Real experiments often pose safety risks associated with
explosions, flames, corrosion, and toxic gases. Integrating
virtual reality technology into smart experiments can meet
the safety and comfort needs of the users, enabling them to
concentrate on exploring the experiment’s principles without
undue psychological pressure.

During actual experimental teaching, students’ needs for
belongingness are enhanced by teacher-student interaction.
In virtual experiments, users often feel isolated, which can
impede their transition into the learning and experimental
states. To address this issue, the system has incorporated

Table 1. Multimodal output module.

Multimodal output module Basic needs Sensory needs Voice prompt and correction
Experimental phenomenon display
Real tactile feeling
Vibration sensation

System needs Smart glove
Head-mounted device
Real experimental instrument
Smart experiment design

Security and comfort needs Experimental safety
Physical comfort needs
Psychological comfort

Belongingness needs Listening and speaking interaction needs
Experimental Q&A interaction needs

Esteem needs Encouragement
Systematic respect
Game Entry Mode

Self-realization needs Experimental principle learning
Grade scoring needs
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modules which provide listening and speaking interaction
and Q&A interaction enabling the users to communicate
and feel less isolated.

At the same time, students strive to fulfill their esteem
and self-actualization needs through curiosity and encour-
agement, with minimal assistance. To encourage motivation
and reduce negative feedback during the experimental
process, the system uses incentives such as encouragement,
level scoring, game mode, and other interactive methods.
These incentives help develop the needs for esteem and self-
actualization, fostering the students’ motivation to learn.

4. Experimental results and discussion

4.1. System setup and experimental method

The tests were conducted at MRLab utilizing a smart glove,
a head-mounted device, and a computer with an Intel(R)
Core(TM) i7-10875H CPU and Nvidia RTX 2060 GPU. The
MRLab predominantly uses the Unity engine and C# pro-
gramming language, and the analysis procedure is based on
PyTorch deep learning framework using Pycharm. And,
speech channel intention is analyzed through the Baidu
speech recognition API and Chinese Jieba word segmenta-
tion lexical analysis for recognizing user speech.

Ten volunteers with an age mean of 26.2 and a standard
deviation of 4.24, including 6 men and 4 women, partici-
pated in the experiment for SrNet: They used smart gloves
developed in this study to grip, release, pour, and pinch
while continuously recording the signal. So, the experiment
produced 6382 training and 2735 test datasets saved in .csv
format, where some data was vulnerable to noise and out-
liers. Because of the curvature sensor and pressure sensor
can only produce five valid data for the five fingers of the
glove, but the posture sensor generates six valid data (three-
axis angle and acceleration), so other data must be filled
with the operation.

The experiments involving the use of the smart glove
were approved by the IRB, and all participants in these
experiments have provided written informed consent.

4.2. Experimental setup

To compare the learning effects of MRLab with the trad-
itional WEB (Fang et al., 2020), AR/VR (Han et al., 2020),
and traditional MR experimental environments (Zeng et al.,
2020), this research set up the ablation experimental envi-
ronments used for comparison, as shown in Table 2.

This paper exemplifies four experiments, “chlorine gas
preparation,” “charcoal reduction of iron oxide,” “ammonia
production,” and “red phosphorus combustion.” As shown

in Table 3, volunteers were requested to carry out the major
steps of the experiments and record the associated experi-
mental data. From secondary schools, a total of 21 volun-
teers were recruited, consisting of 10 males and 11 females,
without prior experience in VR experiments. The protocol
entailed providing an extensive introduction to the VR
environment before the experiment began. Each volunteer
practiced the experimental scenario for 5minutes to
familiarize them with the interface’s capabilities. Figure 5
illustrates each experiment’s VR display interface.

4.3. Comparison of algorithm effectiveness

The multimodal hybrid fusion model proposed in this paper
originates from a previous study that introduced an MFA
multimodal fusion method based on decision layer fusion
(Wang et al., 2022). The study conducts a series of compara-
tive experiments where volunteers complete the tasks twice,
once in the MRLab environment and once in the environ-
ment used in the previous study. Then, the experimental
data of completion rate, average completion time, and user
satisfaction (measured on a scale of 1–10 points) are
counted, as depicted in Figure 6, to explore the correlation
between different environments and performance metrics.

As demonstrated in Figure 6, both of the multimodal
fusion algorithms exhibit high intent recognition accuracy,
with the recognition rates consistently above 94%.
Nonetheless, the GVVS model outperforms the MFA algo-
rithm in both intent recognition accuracy and experiment
completion rate. The GVVS model improves the intent ana-
lysis and fusion process of multiple channels, including
speech, sensor, and visual, and also integrates head pose
information from the head-mounted device.

Previous studies often rely on devices like standing cam-
eras or Kinect to observe user actions, which may cause
potential issues of obstructing visual information and miss-
ing small experimental objects. Whereas, the development of
MRLab alleviates the physical and mental strain on users,
enhances the level of immersion during experiments, and
facilitates secondary school students to carry out experi-
ments with high accuracy and efficiency.

4.4. Time performance evaluation

Figure 7 displays the mean times required to complete vari-
ous key experimental steps in each experimental setting,
with the error bars showing the standard error of the mean.

Table 2. Four different experimental environments.

Experiment environment Description

EV1 WEB-side experimental environment (NOBOOK)
EV2 AR/VR experiment environment (VR glasses)
EV3 Traditional MR experiment environment

(Kinect/Camera)
EV4 MRLab

Table 3. Key steps of the four experiments.

Task Description

1 Add potassium permanganate and dilute hydrochloric acid to
the reaction vessel for chlorine gas preparation and collect
the chlorine gas produced.

2 Add charcoal powder and iron oxide powder to the reaction test tube,
heat the test tube and observe the experimental phenomenon.

3 Heat concentrated ammonia to prepare ammonia gas and test the
acidity and alkalinity with red litmus paper.

4 Put the burning red phosphorus into the beaker with oxygen and
observe the experimental phenomena.
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ANOVA and post-hoc comparison tests are performed in
this paper to identify significant variations between the
experimental groups. The ANOVA results revealed that dif-
ferent environments have a noticeable impact on interaction
times for Task 1 (F¼ 44.5221, p< 0.001), Task 2

(F¼ 72.9653, p< 0.001), Task 3 (F¼ 112.745, p< 0.001), and
Task 4 (F¼ 267.611, p< 0.001). Table 4 reports the com-
parative test outcomes between EV4 and other experimental
settings. In the table, Y and N are used to denote the pres-
ence or absence of statistically significant differences.

Based on the graphs and user feedback, EV4 exhibited
superior time performance in completing all four tasks com-
pared to the other three experimental environments. In
EV1, users perform experiments using only a mouse and
keyboard, and they can complete the four experimental tasks
in less time if their familiarity with the experimental back-
ground. Consequently, EV4 consumed significantly more

Figure 5. (a) shows the chlorine preparation experiment; (b) the charcoal reduction of iron oxide experiment, the user ignites the alcoholic blowtorch to observe
the experimental phenomenon; (c) the ammonia production experiment, the user picks up the red litmus paper turns blue; (d) the red phosphorus combustion
experiment, the burning red phosphorus into the gas collection bottle containing oxygen reaction.

Figure 6. Comparative box plots of experiment completion rate, average completion time and user satisfaction.

Figure 7. Time performance of four experimental environments on four key
tasks (the X-axis represents different key tasks and the Y-axis represents the
completion time of that task).

Table 4. The post-hoc comparison test results of interaction time.

Task

EV4&EV1 EV4&EV2 EV4&EV3

p S p S p S

1 0.0426 Y" <0.001 Y# <0.001 Y#
2 0.00242 Y" <0.001 Y# <0.001 Y#
3 0.01589 N <0.001 Y# <0.001 Y#
4 <0.001 Y" <0.001 Y# <0.001 Y#
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time than EV1 in Task 1, Task 2, and Task 4. In contrast,
EV2 and EV3 do not offer the same level of convenience to
users, as it requires them to have proper VR experience and
operate virtual or real objects within the scene, which
increases the time consumption in turn. Conversely, this
study proposes the GVVS hybrid fusion model suitable for
the EV4 environment, which significantly reduces the time
consumption compared to EV2 and EV3, and even for Task
3, the time performance of EV4 is similar to that of EV1.

4.5. User experience evaluation

After users completed Task 1 through Task 4, this study
invited volunteers to evaluate four experimental environ-
ments based on SUS questionnaires to verify the superiority
of EV4’s user experience. The questionnaires contained 13
questions with mean opinion scores (MOS) ranging from 1
to 5, symbolizing increasing levels of satisfaction. Table 5
illustrates the questionnaire topics covered in the evaluation.
Questions 1 through 6 investigated users’ system usage
experience (F¼ 20.271, p< 0.001), questions 7–9 focused on
users’ knowledge learning experience (F¼ 9.8178, p< 0.001),
and questions 10 through 13 delved into users’ psychological
burden (F¼ 6.8708, p< 0.001).

ANOVA and post-hoc comparison tests were used to
analyze the significance of differences between groups, based
on the questionnaire scoring data. Mean scores along with
error bars for system usage experience, knowledge learning
experience, and psychological burden for the four experi-
mental settings are illustrated in Figure 8. The comparison
tests between EV4 and each comparative experimental set-
ting are presented in Table 6.

According to user feedback and charts, EV4 offers a not-
ably superior user experience than the other three experi-
mental environments. In EV1, users can only perform

experiments via a mouse and keyboard, resulting in limited
immersion and operational experience. Furthermore, the
absence of voice and text prompts means users have to focus
on learning the system, increasing psychological pressure. In
contrast, EV2 enables users to perform experiments with VR
glasses in a virtual environment, enhancing immersion,
while voice prompts help in learning experimental skills.
However, using the tactile device can cause physical and
mental fatigue, with the entirely virtual environment failing
to provide a genuine operational feel. For EV3, although the
experiment form is changed from virtual to virtual-reality
fusion form, which maintains immersion and improves the
sense of operation. Still, additional devices like Kinect and a
camera increase the memory burden, making it challenging
to operate the experiment. Conversely, EV4 leverages a
smart glove and head-mounted device, eliminating the
occlusion issue that existed in EV3 and enabling virtual-
reality fusion experiments in an MR environment. As a
result, EV4 substantially improves system usage experience,
knowledge acquisition experience, and psychological burden
reduction. Finally, Table 7 depicts a positive correlation
between these three indices, indicating high-scoring experi-
mental environments offer a better system usage experience
and knowledge acquisition experience with little psycho-
logical strain.

4.6. Discussion and future work

The findings of ANOVA and post-hoc comparison tests
demonstrates that MRLab (EV4) outperforms the WEB
experiment (EV1), AR/VR experiment (EV2), and traditional
MR experiment (EV3) in terms of usage experience,

Table 5. Questionnaire for user experience evaluation.

Question Description (low score ! high score)

Q1 Whether you are willing to use this experimental platform
(unwilling ! willing)

Q2 Whether the function of this experiment platform is simple
(difficult ! simple)

Q3 Whether the interaction process of this experiment platform is
simple (difficult ! simple)

Q4 Whether you need to ask for help to complete the experiment
(required ! not required)

Q5 Does it require a lot of learning before using this experiment
platform (required ! not required)

Q6 Whether this experiment platform is worth promoting (no
! yes)

Q7 Whether you can focus more on learning knowledge (no
! yes)

Q8 Whether you are more interested in teaching experiments after
using it (no ! yes)

Q9 Whether I can learn more by using this platform for
experiments (no ! yes)

Q10 Confident or frustrated in the process of using it (frustrated !
confident)

Q11 Is the process of using it psychologically uncomfortable
(uncomfortable ! comfortable)

Q12 Is it physically uncomfortable during use (uncomfortable !
comfortable)

Q13 How do you feel about self-performance using this system (not
good ! good)

Figure 8. SUS questionnaire survey evaluation of four experimental environ-
ments (the X-axis represents the system usage, knowledge learning experience
and psychological burden of the four experimental environments, and the Y-
axis represents the MOS of different experimental environments).

Table 6. The post-hoc comparison test results of user experience evaluation.

Evaluating indicator

EV4&EV1 EV4&EV2 EV4&EV3

p S p p S p

System usage experience <0.001 Y" <0.001 Y" 0.009467 Y"
Knowledge learning

experience
<0.001 Y" 0.000886 Y" 0.033981 Y"

Psychological burden 0.000169 Y" 0.013088 Y" 0.002801 Y"
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knowledge learning experience, and psychological stress.
Furthermore, the correlation analysis indicates that the
improvement in one evaluation indicator relates to an
improvement in the other two, hence, users will have a bet-
ter experience and learn more when their psychological
stress is minimal. The experimental form of MRLab effect-
ively overcomes the issues associated with (1) EV1’s lack of
real operating experience and weak immersion, (2) EV2’s
tendency to cause greater psychological and physical bur-
dens due to prolonged use of HMD devices, and (3) EV3’s
unsuitability for experimental activities in a pandemic envir-
onment because it not only causes users a severe psycho-
logical strain but also because its recognition accuracy
declines with distance. Consequently, on the basis of EV3,
MRLab employs a simple head-mounted device and a smart
glove to build a smart experimental environment. It applies
the multimodal hybrid fusion model GVVS to analyze and
process information such as the user’s sensing, voice, and
scene vision. After MRLab obtains the user’s experimental
intention, it can assist the user to realize interactive applica-
tions such as the interaction between experimental equip-
ment and chemicals, tactile experience, and observation of
experimental phenomena in a virtual-reality fusion
environment.

Despite its usefulness as an experimental teaching solu-
tion during the pandemic, MRLab has a limited number of
common physical and chemistry experiments.
Simultaneously, during experiments, many students raised
concerns about the difficulty of conducting studies at home
due to a lack of instruments. To address this issue, we need
to propose new interactive ways to integrate smart experi-
ments into daily life. One possible solution is designing dif-
ferent types of cards to replace various experimental
equipment and chemicals, which will assist students in com-
pleting experiments. In addition, expanding the types and
quantities of experiments can also help overcome these limi-
tations. Regarding wearables, depth information was used in
this study to address the positioning issue between the vir-
tual and real coordinates of the smart glove. However,
because of depth information errors, the virtual hand’s
coordinate drift may occasionally occur. To solve this issue,
we can employ SLAM technology based on binocular cam-
eras for spatial positioning or upgrade the hardware of
smart glove using Hall sensors and AOA of Bluetooth tech-
nology (Toasa et al., 2021).

As for potential avenues for future research, we discov-
ered that users occasionally struggle in representing multi-
modal data in MRLab accurately. To address this issue, we
intend to apply the concept of fuzzy categorization to pro-
cess the user’s multimodal input. We can establish a gen-
eralized membership paradigm in the MRLab
environment to deal with ambiguous multimodal informa-
tion; Inspired by flow theory (Shernoff et al., 2003), we

aim to enhance the user’s immersion in the MR experi-
mental environment by introducing personalized game
experiments and identifying users’ weak knowledge points
through application-level innovation. At the same time,
we still need to pay attention to human-computer inter-
action issues, such as interactive, sensory, and learning
experiences, and reducing psychological burden, in the
virtual-reality fusion environment; In terms of multi-user
collaboration, we can establish a new modality for effect-
ive remote experimental-teaching interaction between stu-
dents and teachers. For example, instructors can remotely
assist students in MRLab with experimental teaching by
using web browsers.

5. Conclusion

The present study employs an MRLab to facilitate a sec-
ondary school experiment through the use of a smart
glove and a head-mounted device. To infer the user’s
experimental intention, this study proposes a multimodal
hybrid fusion model called GVVS. The GVVS model
employs the SrNet model, the SIPA algorithm, and the
SVF algorithm to effectively analyze multi-sensor signals,
voice data, and scene visual information when the user is
performing experimental operations with the smart glove.
The model uses hybrid fusion to transform abstract data
information into a mathematical language that computers
can easily understand, and generates the user’s final
experimental intention, which is in contrast to multi-
modal fusion algorithms that only employ feature layer or
decision layer fusion. Meanwhile, confronting the issues
of a lack of sense of actual operation and immersion in
experimental forms like WEB or AR/VR, the real world
and the virtual world are subtly displayed in the same vis-
ual environment by MRLab, which enhances the user’s
sense of immersion and realizes the interaction between
real and virtual objects. Experiments demonstrate that the
GVVS model achieves a good recognition impact of users’
experimental intention. During the COVID-19 epidemic,
it can assist students in solving the challenge of complet-
ing secondary school experiment assignments at home
and advance the advancement of smart education.
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Table 7. Pearson correlation coefficient of different experimental environment evaluation indexes.

Pearson correlation coefficient EV1 EV2 EV3 EV4

System usage experience and knowledge learning experience 0.62 0.59 0.43 0.43
Knowledge learning experience and Psychological burden 0.76 0.56 0.61 0.76
Psychological burden and knowledge learning experience 0.43 0.69 0.64 0.62
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